Форк Rambox
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1372 lines
49 KiB

/**
* @class Ext.draw.Draw
* Base Drawing class. Provides base drawing functions.
* @private
*/
Ext.define('Ext.draw.Draw', {
/* Begin Definitions */
singleton: true,
requires: ['Ext.draw.Color'],
/* End Definitions */
pathToStringRE: /,?([achlmqrstvxz]),?/gi,
pathCommandRE: /([achlmqstvz])[\s,]*((-?\d*\.?\d*(?:e[-+]?\d+)?\s*,?\s*)+)/ig,
pathValuesRE: /(-?\d*\.?\d*(?:e[-+]?\d+)?)\s*,?\s*/ig,
stopsRE: /^(\d+%?)$/,
radian: Math.PI / 180,
availableAnimAttrs: {
along: "along",
blur: null,
"clip-rect": "csv",
cx: null,
cy: null,
fill: "color",
"fill-opacity": null,
"font-size": null,
height: null,
opacity: null,
path: "path",
r: null,
rotation: "csv",
rx: null,
ry: null,
scale: "csv",
stroke: "color",
"stroke-opacity": null,
"stroke-width": null,
translation: "csv",
width: null,
x: null,
y: null
},
is: function(o, type) {
type = String(type).toLowerCase();
return (type == "object" && o === Object(o)) ||
(type == "undefined" && typeof o == type) ||
(type == "null" && o === null) ||
(type == "array" && Array.isArray && Array.isArray(o)) ||
(Object.prototype.toString.call(o).toLowerCase().slice(8, -1)) == type;
},
ellipsePath: function(sprite) {
var attr = sprite.attr;
return Ext.String.format("M{0},{1}A{2},{3},0,1,1,{0},{4}A{2},{3},0,1,1,{0},{1}z", attr.x, attr.y - attr.ry, attr.rx, attr.ry, attr.y + attr.ry);
},
rectPath: function(sprite) {
var attr = sprite.attr;
if (attr.radius) {
return Ext.String.format("M{0},{1}l{2},0a{3},{3},0,0,1,{3},{3}l0,{5}a{3},{3},0,0,1,{4},{3}l{6},0a{3},{3},0,0,1,{4},{4}l0,{7}a{3},{3},0,0,1,{3},{4}z", attr.x + attr.radius, attr.y, attr.width - attr.radius * 2, attr.radius, -attr.radius, attr.height - attr.radius * 2, attr.radius * 2 - attr.width, attr.radius * 2 - attr.height);
}
else {
return Ext.String.format("M{0},{1}L{2},{1},{2},{3},{0},{3}z", attr.x, attr.y, attr.width + attr.x, attr.height + attr.y);
}
},
// To be deprecated, converts itself (an arrayPath) to a proper SVG path string
path2string: function () {
return this.join(",").replace(Ext.draw.Draw.pathToStringRE, "$1");
},
// Convert the passed arrayPath to a proper SVG path string (d attribute)
pathToString: function(arrayPath) {
return arrayPath.join(",").replace(Ext.draw.Draw.pathToStringRE, "$1");
},
parsePathString: function (pathString) {
if (!pathString) {
return null;
}
var paramCounts = {a: 7, c: 6, h: 1, l: 2, m: 2, q: 4, s: 4, t: 2, v: 1, z: 0},
data = [],
me = this;
if (me.is(pathString, "array") && me.is(pathString[0], "array")) { // rough assumption
data = me.pathClone(pathString);
}
if (!data.length) {
String(pathString).replace(me.pathCommandRE, function (a, b, c) {
var params = [],
name = b.toLowerCase();
c.replace(me.pathValuesRE, function (a, b) {
b && params.push(+b);
});
if (name == "m" && params.length > 2) {
data.push([b].concat(Ext.Array.splice(params, 0, 2)));
name = "l";
b = (b == "m") ? "l" : "L";
}
while (params.length >= paramCounts[name]) {
data.push([b].concat(Ext.Array.splice(params, 0, paramCounts[name])));
if (!paramCounts[name]) {
break;
}
}
});
}
data.toString = me.path2string;
return data;
},
mapPath: function (path, matrix) {
if (!matrix) {
return path;
}
var x, y, i, ii, j, jj, pathi;
path = this.path2curve(path);
for (i = 0, ii = path.length; i < ii; i++) {
pathi = path[i];
for (j = 1, jj = pathi.length; j < jj-1; j += 2) {
x = matrix.x(pathi[j], pathi[j + 1]);
y = matrix.y(pathi[j], pathi[j + 1]);
pathi[j] = x;
pathi[j + 1] = y;
}
}
return path;
},
pathClone: function(pathArray) {
var res = [],
j, jj, i, ii;
if (!this.is(pathArray, "array") || !this.is(pathArray && pathArray[0], "array")) { // rough assumption
pathArray = this.parsePathString(pathArray);
}
for (i = 0, ii = pathArray.length; i < ii; i++) {
res[i] = [];
for (j = 0, jj = pathArray[i].length; j < jj; j++) {
res[i][j] = pathArray[i][j];
}
}
res.toString = this.path2string;
return res;
},
pathToAbsolute: function (pathArray) {
if (!this.is(pathArray, "array") || !this.is(pathArray && pathArray[0], "array")) { // rough assumption
pathArray = this.parsePathString(pathArray);
}
var res = [],
x = 0,
y = 0,
mx = 0,
my = 0,
i = 0,
ln = pathArray.length,
r, pathSegment, j, ln2;
// MoveTo initial x/y position
if (ln && pathArray[0][0] == "M") {
x = +pathArray[0][1];
y = +pathArray[0][2];
mx = x;
my = y;
i++;
res[0] = ["M", x, y];
}
for (; i < ln; i++) {
r = res[i] = [];
pathSegment = pathArray[i];
if (pathSegment[0] != pathSegment[0].toUpperCase()) {
r[0] = pathSegment[0].toUpperCase();
switch (r[0]) {
// Elliptical Arc
case "A":
r[1] = pathSegment[1];
r[2] = pathSegment[2];
r[3] = pathSegment[3];
r[4] = pathSegment[4];
r[5] = pathSegment[5];
r[6] = +(pathSegment[6] + x);
r[7] = +(pathSegment[7] + y);
break;
// Vertical LineTo
case "V":
r[1] = +pathSegment[1] + y;
break;
// Horizontal LineTo
case "H":
r[1] = +pathSegment[1] + x;
break;
case "M":
// MoveTo
mx = +pathSegment[1] + x;
my = +pathSegment[2] + y;
default:
j = 1;
ln2 = pathSegment.length;
for (; j < ln2; j++) {
r[j] = +pathSegment[j] + ((j % 2) ? x : y);
}
}
}
else {
j = 0;
ln2 = pathSegment.length;
for (; j < ln2; j++) {
res[i][j] = pathSegment[j];
}
}
switch (r[0]) {
// ClosePath
case "Z":
x = mx;
y = my;
break;
// Horizontal LineTo
case "H":
x = r[1];
break;
// Vertical LineTo
case "V":
y = r[1];
break;
// MoveTo
case "M":
pathSegment = res[i];
ln2 = pathSegment.length;
mx = pathSegment[ln2 - 2];
my = pathSegment[ln2 - 1];
default:
pathSegment = res[i];
ln2 = pathSegment.length;
x = pathSegment[ln2 - 2];
y = pathSegment[ln2 - 1];
}
}
res.toString = this.path2string;
return res;
},
// TO BE DEPRECATED
pathToRelative: function (pathArray) {
if (!this.is(pathArray, "array") || !this.is(pathArray && pathArray[0], "array")) {
pathArray = this.parsePathString(pathArray);
}
var res = [],
x = 0,
y = 0,
mx = 0,
my = 0,
start = 0,
r,
pa,
i,
j,
k,
len,
ii,
jj,
kk;
if (pathArray[0][0] == "M") {
x = pathArray[0][1];
y = pathArray[0][2];
mx = x;
my = y;
start++;
res.push(["M", x, y]);
}
for (i = start, ii = pathArray.length; i < ii; i++) {
r = res[i] = [];
pa = pathArray[i];
if (pa[0] != pa[0].toLowerCase()) {
r[0] = pa[0].toLowerCase();
switch (r[0]) {
case "a":
r[1] = pa[1];
r[2] = pa[2];
r[3] = pa[3];
r[4] = pa[4];
r[5] = pa[5];
r[6] = +(pa[6] - x).toFixed(3);
r[7] = +(pa[7] - y).toFixed(3);
break;
case "v":
r[1] = +(pa[1] - y).toFixed(3);
break;
case "m":
mx = pa[1];
my = pa[2];
default:
for (j = 1, jj = pa.length; j < jj; j++) {
r[j] = +(pa[j] - ((j % 2) ? x : y)).toFixed(3);
}
}
} else {
r = res[i] = [];
if (pa[0] == "m") {
mx = pa[1] + x;
my = pa[2] + y;
}
for (k = 0, kk = pa.length; k < kk; k++) {
res[i][k] = pa[k];
}
}
len = res[i].length;
switch (res[i][0]) {
case "z":
x = mx;
y = my;
break;
case "h":
x += +res[i][len - 1];
break;
case "v":
y += +res[i][len - 1];
break;
default:
x += +res[i][len - 2];
y += +res[i][len - 1];
}
}
res.toString = this.path2string;
return res;
},
// Returns a path converted to a set of curveto commands
path2curve: function (path) {
var me = this,
points = me.pathToAbsolute(path),
ln = points.length,
attrs = {x: 0, y: 0, bx: 0, by: 0, X: 0, Y: 0, qx: null, qy: null},
i, seg, segLn, point;
for (i = 0; i < ln; i++) {
points[i] = me.command2curve(points[i], attrs);
if (points[i].length > 7) {
points[i].shift();
point = points[i];
while (point.length) {
Ext.Array.splice(points, i++, 0, ["C"].concat(Ext.Array.splice(point, 0, 6)));
}
Ext.Array.erase(points, i, 1);
ln = points.length;
i--;
}
seg = points[i];
segLn = seg.length;
attrs.x = seg[segLn - 2];
attrs.y = seg[segLn - 1];
attrs.bx = parseFloat(seg[segLn - 4]) || attrs.x;
attrs.by = parseFloat(seg[segLn - 3]) || attrs.y;
}
return points;
},
interpolatePaths: function (path, path2) {
var me = this,
p = me.pathToAbsolute(path),
p2 = me.pathToAbsolute(path2),
attrs = {x: 0, y: 0, bx: 0, by: 0, X: 0, Y: 0, qx: null, qy: null},
attrs2 = {x: 0, y: 0, bx: 0, by: 0, X: 0, Y: 0, qx: null, qy: null},
fixArc = function (pp, i) {
if (pp[i].length > 7) {
pp[i].shift();
var pi = pp[i];
while (pi.length) {
Ext.Array.splice(pp, i++, 0, ["C"].concat(Ext.Array.splice(pi, 0, 6)));
}
Ext.Array.erase(pp, i, 1);
ii = Math.max(p.length, p2.length || 0);
}
},
fixM = function (path1, path2, a1, a2, i) {
if (path1 && path2 && path1[i][0] == "M" && path2[i][0] != "M") {
Ext.Array.splice(path2, i, 0, ["M", a2.x, a2.y]);
a1.bx = 0;
a1.by = 0;
a1.x = path1[i][1];
a1.y = path1[i][2];
ii = Math.max(p.length, p2.length || 0);
}
},
i, ii,
seg, seg2, seglen, seg2len;
for (i = 0, ii = Math.max(p.length, p2.length || 0); i < ii; i++) {
p[i] = me.command2curve(p[i], attrs);
fixArc(p, i);
(p2[i] = me.command2curve(p2[i], attrs2));
fixArc(p2, i);
fixM(p, p2, attrs, attrs2, i);
fixM(p2, p, attrs2, attrs, i);
seg = p[i];
seg2 = p2[i];
seglen = seg.length;
seg2len = seg2.length;
attrs.x = seg[seglen - 2];
attrs.y = seg[seglen - 1];
attrs.bx = parseFloat(seg[seglen - 4]) || attrs.x;
attrs.by = parseFloat(seg[seglen - 3]) || attrs.y;
attrs2.bx = (parseFloat(seg2[seg2len - 4]) || attrs2.x);
attrs2.by = (parseFloat(seg2[seg2len - 3]) || attrs2.y);
attrs2.x = seg2[seg2len - 2];
attrs2.y = seg2[seg2len - 1];
}
return [p, p2];
},
//Returns any path command as a curveto command based on the attrs passed
command2curve: function (pathCommand, d) {
var me = this;
if (!pathCommand) {
return ["C", d.x, d.y, d.x, d.y, d.x, d.y];
}
if (pathCommand[0] != "T" && pathCommand[0] != "Q") {
d.qx = d.qy = null;
}
switch (pathCommand[0]) {
case "M":
d.X = pathCommand[1];
d.Y = pathCommand[2];
break;
case "A":
pathCommand = ["C"].concat(me.arc2curve.apply(me, [d.x, d.y].concat(pathCommand.slice(1))));
break;
case "S":
pathCommand = ["C", d.x + (d.x - (d.bx || d.x)), d.y + (d.y - (d.by || d.y))].concat(pathCommand.slice(1));
break;
case "T":
d.qx = d.x + (d.x - (d.qx || d.x));
d.qy = d.y + (d.y - (d.qy || d.y));
pathCommand = ["C"].concat(me.quadratic2curve(d.x, d.y, d.qx, d.qy, pathCommand[1], pathCommand[2]));
break;
case "Q":
d.qx = pathCommand[1];
d.qy = pathCommand[2];
pathCommand = ["C"].concat(me.quadratic2curve(d.x, d.y, pathCommand[1], pathCommand[2], pathCommand[3], pathCommand[4]));
break;
case "L":
pathCommand = ["C"].concat(d.x, d.y, pathCommand[1], pathCommand[2], pathCommand[1], pathCommand[2]);
break;
case "H":
pathCommand = ["C"].concat(d.x, d.y, pathCommand[1], d.y, pathCommand[1], d.y);
break;
case "V":
pathCommand = ["C"].concat(d.x, d.y, d.x, pathCommand[1], d.x, pathCommand[1]);
break;
case "Z":
pathCommand = ["C"].concat(d.x, d.y, d.X, d.Y, d.X, d.Y);
break;
}
return pathCommand;
},
quadratic2curve: function (x1, y1, ax, ay, x2, y2) {
var _13 = 1 / 3,
_23 = 2 / 3;
return [
_13 * x1 + _23 * ax,
_13 * y1 + _23 * ay,
_13 * x2 + _23 * ax,
_13 * y2 + _23 * ay,
x2,
y2
];
},
rotate: function (x, y, rad) {
var cos = Math.cos(rad),
sin = Math.sin(rad),
X = x * cos - y * sin,
Y = x * sin + y * cos;
return {x: X, y: Y};
},
arc2curve: function (x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2, recursive) {
// for more information of where this Math came from visit:
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
var me = this,
PI = Math.PI,
radian = me.radian,
_120 = PI * 120 / 180,
rad = radian * (+angle || 0),
res = [],
math = Math,
mcos = math.cos,
msin = math.sin,
msqrt = math.sqrt,
mabs = math.abs,
masin = math.asin,
xy, x, y, h, rx2, ry2, k, cx, cy, f1, f2, df, c1, s1, c2, s2,
t, hx, hy, m1, m2, m3, m4, newres, i, ln, f2old, x2old, y2old;
if (!recursive) {
xy = me.rotate(x1, y1, -rad);
x1 = xy.x;
y1 = xy.y;
xy = me.rotate(x2, y2, -rad);
x2 = xy.x;
y2 = xy.y;
x = (x1 - x2) / 2;
y = (y1 - y2) / 2;
h = (x * x) / (rx * rx) + (y * y) / (ry * ry);
if (h > 1) {
h = msqrt(h);
rx = h * rx;
ry = h * ry;
}
rx2 = rx * rx;
ry2 = ry * ry;
k = (large_arc_flag == sweep_flag ? -1 : 1) *
msqrt(mabs((rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x)));
cx = k * rx * y / ry + (x1 + x2) / 2;
cy = k * -ry * x / rx + (y1 + y2) / 2;
f1 = masin(((y1 - cy) / ry).toFixed(7));
f2 = masin(((y2 - cy) / ry).toFixed(7));
f1 = x1 < cx ? PI - f1 : f1;
f2 = x2 < cx ? PI - f2 : f2;
if (f1 < 0) {
f1 = PI * 2 + f1;
}
if (f2 < 0) {
f2 = PI * 2 + f2;
}
if (sweep_flag && f1 > f2) {
f1 = f1 - PI * 2;
}
if (!sweep_flag && f2 > f1) {
f2 = f2 - PI * 2;
}
}
else {
f1 = recursive[0];
f2 = recursive[1];
cx = recursive[2];
cy = recursive[3];
}
df = f2 - f1;
if (mabs(df) > _120) {
f2old = f2;
x2old = x2;
y2old = y2;
f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1);
x2 = cx + rx * mcos(f2);
y2 = cy + ry * msin(f2);
res = me.arc2curve(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [f2, f2old, cx, cy]);
}
df = f2 - f1;
c1 = mcos(f1);
s1 = msin(f1);
c2 = mcos(f2);
s2 = msin(f2);
t = math.tan(df / 4);
hx = 4 / 3 * rx * t;
hy = 4 / 3 * ry * t;
m1 = [x1, y1];
m2 = [x1 + hx * s1, y1 - hy * c1];
m3 = [x2 + hx * s2, y2 - hy * c2];
m4 = [x2, y2];
m2[0] = 2 * m1[0] - m2[0];
m2[1] = 2 * m1[1] - m2[1];
if (recursive) {
return [m2, m3, m4].concat(res);
}
else {
res = [m2, m3, m4].concat(res).join().split(",");
newres = [];
ln = res.length;
for (i = 0; i < ln; i++) {
newres[i] = i % 2 ? me.rotate(res[i - 1], res[i], rad).y : me.rotate(res[i], res[i + 1], rad).x;
}
return newres;
}
},
// TO BE DEPRECATED
rotateAndTranslatePath: function (sprite) {
var alpha = sprite.rotation.degrees,
cx = sprite.rotation.x,
cy = sprite.rotation.y,
dx = sprite.translation.x,
dy = sprite.translation.y,
path,
i,
p,
xy,
j,
res = [];
if (!alpha && !dx && !dy) {
return this.pathToAbsolute(sprite.attr.path);
}
dx = dx || 0;
dy = dy || 0;
path = this.pathToAbsolute(sprite.attr.path);
for (i = path.length; i--;) {
p = res[i] = path[i].slice();
if (p[0] == "A") {
xy = this.rotatePoint(p[6], p[7], alpha, cx, cy);
p[6] = xy.x + dx;
p[7] = xy.y + dy;
} else {
j = 1;
while (p[j + 1] != null) {
xy = this.rotatePoint(p[j], p[j + 1], alpha, cx, cy);
p[j] = xy.x + dx;
p[j + 1] = xy.y + dy;
j += 2;
}
}
}
return res;
},
// TO BE DEPRECATED
rotatePoint: function (x, y, alpha, cx, cy) {
if (!alpha) {
return {
x: x,
y: y
};
}
cx = cx || 0;
cy = cy || 0;
x = x - cx;
y = y - cy;
alpha = alpha * this.radian;
var cos = Math.cos(alpha),
sin = Math.sin(alpha);
return {
x: x * cos - y * sin + cx,
y: x * sin + y * cos + cy
};
},
pathDimensions: function (path) {
if (!path || !(path + "")) {
return {x: 0, y: 0, width: 0, height: 0};
}
path = this.path2curve(path);
var x = 0,
y = 0,
X = [],
Y = [],
i = 0,
ln = path.length,
p, xmin, ymin, xmax, ymax, dim;
for (; i < ln; i++) {
p = path[i];
if (p[0] == "M") {
x = p[1];
y = p[2];
X.push(x);
Y.push(y);
}
else {
dim = this.curveDim(x, y, p[1], p[2], p[3], p[4], p[5], p[6]);
X = X.concat(dim.min.x, dim.max.x);
Y = Y.concat(dim.min.y, dim.max.y);
x = p[5];
y = p[6];
}
}
xmin = Math.min.apply(0, X);
ymin = Math.min.apply(0, Y);
xmax = Math.max.apply(0, X);
ymax = Math.max.apply(0, Y);
return {
x: Math.round(xmin),
y: Math.round(ymin),
path: path,
width: Math.round(xmax - xmin),
height: Math.round(ymax - ymin)
};
},
intersectInside: function(path, cp1, cp2) {
return (cp2[0] - cp1[0]) * (path[1] - cp1[1]) > (cp2[1] - cp1[1]) * (path[0] - cp1[0]);
},
intersectIntersection: function(s, e, cp1, cp2) {
var p = [],
dcx = cp1[0] - cp2[0],
dcy = cp1[1] - cp2[1],
dpx = s[0] - e[0],
dpy = s[1] - e[1],
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0],
n2 = s[0] * e[1] - s[1] * e[0],
n3 = 1 / (dcx * dpy - dcy * dpx);
p[0] = (n1 * dpx - n2 * dcx) * n3;
p[1] = (n1 * dpy - n2 * dcy) * n3;
return p;
},
intersect: function(subjectPolygon, clipPolygon) {
var me = this,
i = 0,
ln = clipPolygon.length,
cp1 = clipPolygon[ln - 1],
outputList = subjectPolygon,
cp2, s, e, ln2, inputList, j;
for (; i < ln; ++i) {
cp2 = clipPolygon[i];
inputList = outputList;
outputList = [];
s = inputList[inputList.length - 1];
j = 0;
ln2 = inputList.length;
for (; j < ln2; j++) {
e = inputList[j];
if (me.intersectInside(e, cp1, cp2)) {
if (!me.intersectInside(s, cp1, cp2)) {
outputList.push(me.intersectIntersection(s, e, cp1, cp2));
}
outputList.push(e);
}
else if (me.intersectInside(s, cp1, cp2)) {
outputList.push(me.intersectIntersection(s, e, cp1, cp2));
}
s = e;
}
cp1 = cp2;
}
return outputList;
},
bezier : function (a, b, c, d, x) {
if (x === 0) {
return a;
}
else if (x === 1) {
return d;
}
var du = 1 - x,
d3 = du * du * du,
r = x / du;
return d3 * (a + r * (3 * b + r * (3 * c + d * r)));
},
bezierDim : function (a, b, c, d) {
var points = [], r,
A, top, C, delta, bottom, s,
min, max, i;
// The min and max happens on boundary or b' == 0
if (a + 3 * c == d + 3 * b) {
r = a - b;
r /= 2 * (a - b - b + c);
if ( r < 1 && r > 0) {
points.push(r);
}
} else {
// b'(x) / -3 = (a-3b+3c-d)x^2+ (-2a+4b-2c)x + (a-b)
// delta = -4 (-b^2+a c+b c-c^2-a d+b d)
A = a - 3 * b + 3 * c - d;
top = 2 * (a - b - b + c);
C = a - b;
delta = top * top - 4 * A * C;
bottom = A + A;
if (delta === 0) {
r = top / bottom;
if (r < 1 && r > 0) {
points.push(r);
}
} else if (delta > 0) {
s = Math.sqrt(delta);
r = (s + top) / bottom;
if (r < 1 && r > 0) {
points.push(r);
}
r = (top - s) / bottom;
if (r < 1 && r > 0) {
points.push(r);
}
}
}
min = Math.min(a, d);
max = Math.max(a, d);
for (i = 0; i < points.length; i++) {
min = Math.min(min, this.bezier(a, b, c, d, points[i]));
max = Math.max(max, this.bezier(a, b, c, d, points[i]));
}
return [min, max];
},
curveDim: function (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) {
var x = this.bezierDim(p1x, c1x, c2x, p2x),
y = this.bezierDim(p1y, c1y, c2y, p2y);
return {
min: {
x: x[0],
y: y[0]
},
max: {
x: x[1],
y: y[1]
}
};
},
/**
* @private
*
* Calculates bezier curve control anchor points for a particular point in a path, with a
* smoothing curve applied. The smoothness of the curve is controlled by the 'value' parameter.
* Note that this algorithm assumes that the line being smoothed is normalized going from left
* to right; it makes special adjustments assuming this orientation.
*
* @param {Number} prevX X coordinate of the previous point in the path
* @param {Number} prevY Y coordinate of the previous point in the path
* @param {Number} curX X coordinate of the current point in the path
* @param {Number} curY Y coordinate of the current point in the path
* @param {Number} nextX X coordinate of the next point in the path
* @param {Number} nextY Y coordinate of the next point in the path
* @param {Number} value A value to control the smoothness of the curve; this is used to
* divide the distance between points, so a value of 2 corresponds to
* half the distance between points (a very smooth line) while higher values
* result in less smooth curves. Defaults to 4.
* @return {Object} Object containing x1, y1, x2, y2 bezier control anchor points; x1 and y1
* are the control point for the curve toward the previous path point, and
* x2 and y2 are the control point for the curve toward the next path point.
*/
getAnchors: function (prevX, prevY, curX, curY, nextX, nextY, value) {
value = value || 4;
var M = Math,
PI = M.PI,
halfPI = PI / 2,
abs = M.abs,
sin = M.sin,
cos = M.cos,
atan = M.atan,
control1Length, control2Length, control1Angle, control2Angle,
control1X, control1Y, control2X, control2Y, alpha;
// Find the length of each control anchor line, by dividing the horizontal distance
// between points by the value parameter.
control1Length = (curX - prevX) / value;
control2Length = (nextX - curX) / value;
// Determine the angle of each control anchor line. If the middle point is a vertical
// turnaround then we force it to a flat horizontal angle to prevent the curve from
// dipping above or below the middle point. Otherwise we use an angle that points
// toward the previous/next target point.
if ((curY >= prevY && curY >= nextY) || (curY <= prevY && curY <= nextY)) {
control1Angle = control2Angle = halfPI;
} else {
control1Angle = atan((curX - prevX) / abs(curY - prevY));
if (prevY < curY) {
control1Angle = PI - control1Angle;
}
control2Angle = atan((nextX - curX) / abs(curY - nextY));
if (nextY < curY) {
control2Angle = PI - control2Angle;
}
}
// Adjust the calculated angles so they point away from each other on the same line
alpha = halfPI - ((control1Angle + control2Angle) % (PI * 2)) / 2;
if (alpha > halfPI) {
alpha -= PI;
}
control1Angle += alpha;
control2Angle += alpha;
// Find the control anchor points from the angles and length
control1X = curX - control1Length * sin(control1Angle);
control1Y = curY + control1Length * cos(control1Angle);
control2X = curX + control2Length * sin(control2Angle);
control2Y = curY + control2Length * cos(control2Angle);
// One last adjustment, make sure that no control anchor point extends vertically past
// its target prev/next point, as that results in curves dipping above or below and
// bending back strangely. If we find this happening we keep the control angle but
// reduce the length of the control line so it stays within bounds.
if ((curY > prevY && control1Y < prevY) || (curY < prevY && control1Y > prevY)) {
control1X += abs(prevY - control1Y) * (control1X - curX) / (control1Y - curY);
control1Y = prevY;
}
if ((curY > nextY && control2Y < nextY) || (curY < nextY && control2Y > nextY)) {
control2X -= abs(nextY - control2Y) * (control2X - curX) / (control2Y - curY);
control2Y = nextY;
}
return {
x1: control1X,
y1: control1Y,
x2: control2X,
y2: control2Y
};
},
/* Smoothing function for a path. Converts a path into cubic beziers. Value defines the divider of the distance between points.
* Defaults to a value of 4.
*/
smooth: function (originalPath, value) {
var path = this.path2curve(originalPath),
newp = [path[0]],
x = path[0][1],
y = path[0][2],
j,
points,
i = 1,
ii = path.length,
beg = 1,
mx = x,
my = y,
pathi,
pathil,
pathim,
pathiml,
pathip,
pathipl,
begl;
for (; i < ii; i++) {
pathi = path[i];
pathil = pathi.length;
pathim = path[i - 1];
pathiml = pathim.length;
pathip = path[i + 1];
pathipl = pathip && pathip.length;
if (pathi[0] == "M") {
mx = pathi[1];
my = pathi[2];
j = i + 1;
while (path[j][0] != "C") {
j++;
}
newp.push(["M", mx, my]);
beg = newp.length;
x = mx;
y = my;
continue;
}
if (pathi[pathil - 2] == mx && pathi[pathil - 1] == my && (!pathip || pathip[0] == "M")) {
begl = newp[beg].length;
points = this.getAnchors(pathim[pathiml - 2], pathim[pathiml - 1], mx, my, newp[beg][begl - 2], newp[beg][begl - 1], value);
newp[beg][1] = points.x2;
newp[beg][2] = points.y2;
}
else if (!pathip || pathip[0] == "M") {
points = {
x1: pathi[pathil - 2],
y1: pathi[pathil - 1]
};
} else {
points = this.getAnchors(pathim[pathiml - 2], pathim[pathiml - 1], pathi[pathil - 2], pathi[pathil - 1], pathip[pathipl - 2], pathip[pathipl - 1], value);
}
newp.push(["C", x, y, points.x1, points.y1, pathi[pathil - 2], pathi[pathil - 1]]);
x = points.x2;
y = points.y2;
}
return newp;
},
findDotAtSegment: function (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
var t1 = 1 - t;
return {
x: Math.pow(t1, 3) * p1x + Math.pow(t1, 2) * 3 * t * c1x + t1 * 3 * t * t * c2x + Math.pow(t, 3) * p2x,
y: Math.pow(t1, 3) * p1y + Math.pow(t1, 2) * 3 * t * c1y + t1 * 3 * t * t * c2y + Math.pow(t, 3) * p2y
};
},
/**
* @private
*/
snapEnds: function (from, to, stepsMax, prettyNumbers) {
if (Ext.isDate(from)) {
return this.snapEndsByDate(from, to, stepsMax);
}
var step = (to - from) / stepsMax,
level = Math.floor(Math.log(step) / Math.LN10) + 1,
m = Math.pow(10, level),
cur,
floor,
modulo = Math.round((step % m) * Math.pow(10, 2 - level)),
interval = [[0, 15], [10, 1], [20, 4], [25, 2], [50, 9], [100, 15]],
stepCount = 0,
value,
weight,
i,
topValue,
topWeight = 1e9,
ln = interval.length;
floor = Math.floor(from / m) * m;
if (from == floor && floor > 0) {
floor = Math.floor((from - (m/10)) / m) * m;
}
if (prettyNumbers) {
for (i = 0; i < ln; i++) {
value = interval[i][0];
weight = (value - modulo) < 0 ? 1e6 : (value - modulo) / interval[i][1];
if (weight < topWeight) {
topValue = value;
topWeight = weight;
}
}
step = Math.floor(step * Math.pow(10, -level)) * Math.pow(10, level) + topValue * Math.pow(10, level - 2);
if (from < 0 && to >= 0) {
cur = 0;
while (cur > from) {
cur -= step;
stepCount++;
}
from = +cur.toFixed(10);
cur = 0;
while (cur < to) {
cur += step;
stepCount++;
}
to = +cur.toFixed(10);
} else {
cur = from = floor;
while (cur < to) {
cur += step;
stepCount++;
}
}
to = +cur.toFixed(10);
} else {
from = floor;
stepCount = stepsMax;
}
return {
from: from,
to: to,
power: level,
step: step,
steps: stepCount
};
},
/**
* snapEndsByDate is a utility method to deduce an appropriate tick configuration for the data set of given
* feature. Refer to {@link #snapEnds}.
*
* @param {Date} from The minimum value in the data
* @param {Date} to The maximum value in the data
* @param {Number} stepsMax The maximum number of ticks
* @param {Boolean} lockEnds If true, the 'from' and 'to' parameters will be used as fixed end values and will not be adjusted
*
* @return {Object} The calculated step and ends info; properties are:
* - from: The result start value, which may be lower than the original start value
* - to: The result end value, which may be higher than the original end value
* - step: The fixed value size of each step, or undefined if the steps are not fixed.
* - steps: The number of steps if the steps are fixed, or an array of step values.
* NOTE: Even when the steps have a fixed value, they may not divide the from/to range perfectly evenly;
* there may be a smaller distance between the last step and the end value than between prior
* steps, particularly when the `endsLocked` param is true. Therefore it is best to not use
* the `steps` result when finding the axis tick points, instead use the `step`, `to`, and
* `from` to find the correct point for each tick.
*/
snapEndsByDate: function (from, to, stepsMax, lockEnds) {
var selectedStep = false,
scales = [
[Ext.Date.MILLI, [1, 2, 5, 10, 20, 50, 100, 200, 250, 500]],
[Ext.Date.SECOND, [1, 2, 5, 10, 15, 30]],
[Ext.Date.MINUTE, [1, 2, 5, 10, 15, 30]],
[Ext.Date.HOUR, [1, 2, 3, 4, 6, 12]],
[Ext.Date.DAY, [1, 2, 7, 14]],
[Ext.Date.MONTH, [1, 2, 3, 6]]
],
sLen = scales.length,
stop = false,
scale, j, yearDiff, s;
// Find the most desirable scale
for (s = 0; s < sLen; s++) {
scale = scales[s];
if (!stop) {
for (j = 0; j < scale[1].length; j++) {
if (to < Ext.Date.add(from, scale[0], scale[1][j] * stepsMax)) {
selectedStep = [scale[0], scale[1][j]];
stop = true;
break;
}
}
}
}
if (!selectedStep) {
yearDiff = this.snapEnds(from.getFullYear(), to.getFullYear() + 1, stepsMax, lockEnds);
selectedStep = [Date.YEAR, Math.round(yearDiff.step)];
}
return this.snapEndsByDateAndStep(from, to, selectedStep, lockEnds);
},
/**
* snapEndsByDateAndStep is a utility method to deduce an appropriate tick configuration for the data set of given
* feature and specific step size.
*
* @param {Date} from The minimum value in the data
* @param {Date} to The maximum value in the data
* @param {Array} step An array with two components: The first is the unit of the step (day, month, year, etc).
* The second is the number of units for the step (1, 2, etc.).
* If the number is an integer, it represents the number of units for the step ([Ext.Date.DAY, 2] means "Every other day").
* If the number is a fraction, it represents the number of steps per unit ([Ext.Date.DAY, 1/2] means "Twice a day").
* If the unit is the month, the steps may be adjusted depending on the month. For instance [Ext.Date.MONTH, 1/3], which means "Three times a month",
* generates steps on the 1st, the 10th and the 20th of every month regardless of whether a month has 28 days or 31 days. The steps are generated
* as follows:
* - [Ext.Date.MONTH, n]: on the current date every 'n' months, maxed to the number of days in the month.
* - [Ext.Date.MONTH, 1/2]: on the 1st and 15th of every month.
* - [Ext.Date.MONTH, 1/3]: on the 1st, 10th and 20th of every month.
* - [Ext.Date.MONTH, 1/4]: on the 1st, 8th, 15th and 22nd of every month.
* @param {Boolean} lockEnds If true, the 'from' and 'to' parameters will be used as fixed end values
* and will not be adjusted
*
* @return {Object} The calculated step and ends info; properties are:
* - from: The result start value, which may be lower than the original start value
* - to: The result end value, which may be higher than the original end value
* - step: The fixed value size of each step, or undefined if the steps are not fixed.
* - steps: The number of steps if the steps are fixed, or an array of step values.
* NOTE: Even when the steps have a fixed value, they may not divide the from/to range perfectly evenly;
* there may be a smaller distance between the last step and the end value than between prior
* steps, particularly when the `endsLocked` param is true. Therefore it is best to not use
* the `steps` result when finding the axis tick points, instead use the `step`, `to`, and
* `from` to find the correct point for each tick. For Ext.Date.MONTH and Ext.Date.YEAR step unit,
* `steps` are always returned as array instead of number of steps; this is because months and years
* have uneven step distribution and dividing them in even intervals does not work correctly.
*/
snapEndsByDateAndStep: function(from, to, step, lockEnds) {
var fromStat = [from.getFullYear(), from.getMonth(), from.getDate(),
from.getHours(), from.getMinutes(), from.getSeconds(), from.getMilliseconds()],
testFrom, testTo, date, year, month, day, fractionalMonth, stepsArray,
stepUnit = step[0], stepValue = step[1],
steps = 0;
if (lockEnds) {
testFrom = from;
}
else {
switch (stepUnit) {
case Ext.Date.MILLI:
testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3],
fromStat[4], fromStat[5], Math.floor(fromStat[6] / stepValue) * stepValue);
break;
case Ext.Date.SECOND:
testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3],
fromStat[4], Math.floor(fromStat[5] / stepValue) * stepValue, 0);
break;
case Ext.Date.MINUTE:
testFrom = new Date(fromStat[0], fromStat[1], fromStat[2], fromStat[3],
Math.floor(fromStat[4] / stepValue) * stepValue, 0, 0);
break;
case Ext.Date.HOUR:
testFrom = new Date(fromStat[0], fromStat[1], fromStat[2],
Math.floor(fromStat[3] / stepValue) * stepValue, 0, 0, 0);
break;
case Ext.Date.DAY:
testFrom = new Date(fromStat[0], fromStat[1],
Math.floor((fromStat[2] - 1) / stepValue) * stepValue + 1, 0, 0, 0, 0);
break;
case Ext.Date.MONTH:
testFrom = new Date(fromStat[0], Math.floor(fromStat[1] / stepValue) * stepValue, 1, 0, 0, 0, 0);
steps = [];
stepsArray = true;
break;
default: // Ext.Date.YEAR
testFrom = new Date(Math.floor(fromStat[0] / stepValue) * stepValue, 0, 1, 0, 0, 0, 0);
steps = [];
stepsArray = true;
break;
}
}
fractionalMonth = ((stepUnit === Ext.Date.MONTH) && (stepValue == 1/2 || stepValue == 1/3 || stepValue == 1/4));
// TODO(zhangbei) : We can do it better somehow...
testTo = new Date(testFrom);
while (testTo < to) {
if (fractionalMonth) {
date = new Date(testTo);
year = date.getFullYear();
month = date.getMonth();
day = date.getDate();
switch(stepValue) {
case 1/2: // the 1st and 15th of every month
if (day >= 15) {
day = 1;
if (++month > 11) {
year++;
}
}
else {
day = 15;
}
break;
case 1/3: // the 1st, 10th and 20th of every month
if (day >= 20) {
day = 1;
if (++month > 11) {
year++;
}
}
else {
if (day >= 10) {
day = 20
}
else {
day = 10;
}
}
break;
case 1/4: // the 1st, 8th, 15th and 22nd of every month
if (day >= 22) {
day = 1;
if (++month > 11) {
year++;
}
}
else {
if (day >= 15) {
day = 22
}
else {
if (day >= 8) {
day = 15
}
else {
day = 8;
}
}
}
break;
}
testTo.setYear(year);
testTo.setMonth(month);
testTo.setDate(day);
steps.push(new Date(testTo));
}
else if (stepsArray) {
testTo = Ext.Date.add(testTo, stepUnit, stepValue);
steps.push(new Date(testTo));
}
else {
testTo = Ext.Date.add(testTo, stepUnit, stepValue);
steps++;
}
}
if (lockEnds) {
testTo = to;
}
if (stepsArray) {
return {
from : +testFrom,
to : +testTo,
steps : steps // array of steps
};
}
else {
return {
from : +testFrom,
to : +testTo,
step : (testTo - testFrom) / steps,
steps : steps // number of steps
};
}
},
sorter: function (a, b) {
return a.offset - b.offset;
},
rad: function(degrees) {
return degrees % 360 * Math.PI / 180;
},
normalizeRadians: function(radian) {
var twoPi = 2 * Math.PI;
if (radian >= 0) {
return radian % twoPi;
}
return ((radian % twoPi) + twoPi) % twoPi;
},
degrees: function(radian) {
return radian * 180 / Math.PI % 360;
},
normalizeDegrees: function(degrees) {
if (degrees >= 0) {
return degrees % 360;
}
return ((degrees % 360) + 360) % 360;
},
withinBox: function(x, y, bbox) {
bbox = bbox || {};
return (x >= bbox.x && x <= (bbox.x + bbox.width) && y >= bbox.y && y <= (bbox.y + bbox.height));
},
parseGradient: function(gradient) {
var me = this,
type = gradient.type || 'linear',
angle = gradient.angle || 0,
radian = me.radian,
stops = gradient.stops,
stopsArr = [],
stop,
vector,
max,
stopObj;
if (type == 'linear') {
vector = [0, 0, Math.cos(angle * radian), Math.sin(angle * radian)];
max = 1 / (Math.max(Math.abs(vector[2]), Math.abs(vector[3])) || 1);
vector[2] *= max;
vector[3] *= max;
if (vector[2] < 0) {
vector[0] = -vector[2];
vector[2] = 0;
}
if (vector[3] < 0) {
vector[1] = -vector[3];
vector[3] = 0;
}
}
for (stop in stops) {
if (stops.hasOwnProperty(stop) && me.stopsRE.test(stop)) {
stopObj = {
offset: parseInt(stop, 10),
color: Ext.draw.Color.toHex(stops[stop].color) || '#ffffff',
opacity: stops[stop].opacity || 1
};
stopsArr.push(stopObj);
}
}
// Sort by pct property
Ext.Array.sort(stopsArr, me.sorter);
if (type == 'linear') {
return {
id: gradient.id,
type: type,
vector: vector,
stops: stopsArr
};
}
else {
return {
id: gradient.id,
type: type,
centerX: gradient.centerX,
centerY: gradient.centerY,
focalX: gradient.focalX,
focalY: gradient.focalY,
radius: gradient.radius,
vector: vector,
stops: stopsArr
};
}
}
});