diff --git a/app/app.manifest b/app/app.manifest
index 412e2512..eff6ccbf 100644
--- a/app/app.manifest
+++ b/app/app.manifest
@@ -1,6 +1,6 @@
CACHE MANIFEST
-# 1
+# 2
NETWORK:
*
diff --git a/app/index.html b/app/index.html
index 23138db0..98d35442 100644
--- a/app/index.html
+++ b/app/index.html
@@ -79,6 +79,7 @@
+
diff --git a/app/js/lib/mtproto.js b/app/js/lib/mtproto.js
index a9f34537..e53ae586 100644
--- a/app/js/lib/mtproto.js
+++ b/app/js/lib/mtproto.js
@@ -271,12 +271,36 @@ function nextRandomInt (maxValue) {
};
function pqPrimeFactorization (pqBytes) {
- console.log('PQ start');
-
var what = new BigInteger(pqBytes),
- g;
+ result = false;
+
+ console.log('PQ start', pqBytes, what.bitLength());
+
+ if (what.bitLength() <= 64) {
+ // console.time('PQ long');
+ try {
+ result = pqPrimeLong(goog.math.Long.fromString(what.toString(16), 16));
+ } catch (e) {
+ console.error(e);
+ };
+ // console.timeEnd('PQ long');
+ }
+ console.log(result);
+
+ if (result === false) {
+ // console.time('pq BigInt');
+ result = pqPrimeBigInteger(what);
+ // console.timeEnd('pq BigInt');
+ }
- var it = 0;
+ console.log('PQ finish');
+
+ return result;
+}
+
+function pqPrimeBigInteger (what) {
+ var it = 0,
+ g;
for (var i = 0; i < 3; i++) {
var q = (nextRandomInt(128) & 15) + 17,
x = bigint(nextRandomInt(1000000000) + 1),
@@ -328,11 +352,86 @@ function pqPrimeFactorization (pqBytes) {
Q = f;
}
- console.log('PQ finish', it + ' iterations');
-
return [bytesFromBigInt(P), bytesFromBigInt(Q)];
}
+function gcdLong(a, b) {
+ while (a.notEquals(goog.math.Long.ZERO) && b.notEquals(goog.math.Long.ZERO)) {
+ while (b.and(goog.math.Long.ONE).equals(goog.math.Long.ZERO)) {
+ b = b.shiftRight(1);
+ }
+ while (a.and(goog.math.Long.ONE).equals(goog.math.Long.ZERO)) {
+ a = a.shiftRight(1);
+ }
+ if (a.compare(b) > 0) {
+ a = a.subtract(b);
+ } else {
+ b = b.subtract(a);
+ }
+ }
+ return b.equals(goog.math.Long.ZERO) ? a : b;
+}
+
+function pqPrimeLong(what) {
+ var it = 0,
+ g;
+ for (var i = 0; i < 3; i++) {
+ var q = (nextRandomInt(128) & 15) + 17,
+ x = goog.math.Long.fromInt(nextRandomInt(1000000000) + 1),
+ y = new goog.math.Long(x.getLowBits(), x.getHighBits()),
+ lim = 1 << (i + 18);
+ // console.log(x);
+
+ for (var j = 1; j < lim; j++) {
+ ++it;
+ var a = new goog.math.Long(x.getLowBits(), x.getHighBits()),
+ b = new goog.math.Long(x.getLowBits(), x.getHighBits()),
+ c = goog.math.Long.fromInt(q);
+
+ // console.log(a, b, c);
+
+ while (b.notEquals(goog.math.Long.ZERO)) {
+ if (b.and(goog.math.Long.ONE).notEquals(goog.math.Long.ZERO)) {
+ c = c.add(a);
+ if (c.compare(what) > 0) {
+ c = c.subtract(what);
+ }
+ }
+ a = a.add(a);
+ if (a.compare(what) > 0) {
+ a = a.subtract(what);
+ }
+ b = b.shiftRight(1);
+ }
+
+ x = new goog.math.Long(c.getLowBits(), c.getHighBits());
+ var z = x.compare(y) < 0 ? y.subtract(x) : x.subtract(y);
+ g = gcdLong(z, what);
+ if (g.notEquals(goog.math.Long.ONE)) {
+ break;
+ }
+ if ((j & (j - 1)) == 0) {
+ y = new goog.math.Long(x.getLowBits(), x.getHighBits());
+ }
+ }
+ if (g.compare(goog.math.Long.ONE) > 0) {
+ break;
+ }
+ }
+
+ var f = what.div(g), P, Q;
+
+ if (g.compare(f) > 0) {
+ P = f;
+ Q = g;
+ } else {
+ P = g;
+ Q = f;
+ }
+
+ return [bytesFromHex(P.toString(16)), bytesFromHex(Q.toString(16))];
+}
+
function TLSerialization (options) {
options = options || {};
@@ -1127,12 +1226,13 @@ factory('MtpAuthorizer', function (MtpDcConfigurator, MtpRsaKeysManager, MtpSecu
}
console.log(dT(), 'PQ factorization start');
- if (!!window.Worker && false) {
+ if (!!window.Worker) {
var worker = new Worker('js/lib/pq_worker.js');
worker.onmessage = function (e) {
auth.p = e.data[0];
auth.q = e.data[1];
+ console.log(dT(), 'PQ factorization done');
mtpSendReqDhParams(auth);
};
worker.onerror = function(error) {
@@ -1145,6 +1245,7 @@ factory('MtpAuthorizer', function (MtpDcConfigurator, MtpRsaKeysManager, MtpSecu
auth.p = pAndQ[0];
auth.q = pAndQ[1];
+ console.log(dT(), 'PQ factorization done');
mtpSendReqDhParams(auth);
}
}, function (error) {
diff --git a/app/js/lib/pq_worker.js b/app/js/lib/pq_worker.js
index 6d0031b5..1eb8ba94 100644
--- a/app/js/lib/pq_worker.js
+++ b/app/js/lib/pq_worker.js
@@ -8,6 +8,7 @@
importScripts(
'../../vendor/console-polyfill/console-polyfill.js',
'mtproto.js',
+ '../../vendor/closure/long.js',
'../../vendor/jsbn/jsbn_combined.js'
);
diff --git a/app/vendor/closure/long.js b/app/vendor/closure/long.js
new file mode 100644
index 00000000..e8a076d4
--- /dev/null
+++ b/app/vendor/closure/long.js
@@ -0,0 +1,813 @@
+// Copyright 2009 The Closure Library Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS-IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+/**
+ * @fileoverview Defines a Long class for representing a 64-bit two's-complement
+ * integer value, which faithfully simulates the behavior of a Java "long". This
+ * implementation is derived from LongLib in GWT.
+ *
+ */
+
+/**
+ * This file also contains some modifications by Igor Zhukov in order to add custom scrollbars to EmojiMenu
+ * See keyword `MODIFICATION` in source code.
+ */
+
+/*! MODIFICATION
+The following line was added by Igor Zhukov in order to make library compatibile with other app parts
+*/
+this.goog = {provide: function () {}, math: {}};
+
+
+goog.provide('goog.math.Long');
+
+
+
+/**
+ * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
+ * values as *signed* integers. See the from* functions below for more
+ * convenient ways of constructing Longs.
+ *
+ * The internal representation of a long is the two given signed, 32-bit values.
+ * We use 32-bit pieces because these are the size of integers on which
+ * Javascript performs bit-operations. For operations like addition and
+ * multiplication, we split each number into 16-bit pieces, which can easily be
+ * multiplied within Javascript's floating-point representation without overflow
+ * or change in sign.
+ *
+ * In the algorithms below, we frequently reduce the negative case to the
+ * positive case by negating the input(s) and then post-processing the result.
+ * Note that we must ALWAYS check specially whether those values are MIN_VALUE
+ * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
+ * a positive number, it overflows back into a negative). Not handling this
+ * case would often result in infinite recursion.
+ *
+ * @param {number} low The low (signed) 32 bits of the long.
+ * @param {number} high The high (signed) 32 bits of the long.
+ * @constructor
+ */
+goog.math.Long = function(low, high) {
+ /**
+ * @type {number}
+ * @private
+ */
+ this.low_ = low | 0; // force into 32 signed bits.
+
+ /**
+ * @type {number}
+ * @private
+ */
+ this.high_ = high | 0; // force into 32 signed bits.
+};
+
+
+// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
+// from* methods on which they depend.
+
+
+/**
+ * A cache of the Long representations of small integer values.
+ * @type {!Object}
+ * @private
+ */
+goog.math.Long.IntCache_ = {};
+
+
+/**
+ * Returns a Long representing the given (32-bit) integer value.
+ * @param {number} value The 32-bit integer in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromInt = function(value) {
+ if (-128 <= value && value < 128) {
+ var cachedObj = goog.math.Long.IntCache_[value];
+ if (cachedObj) {
+ return cachedObj;
+ }
+ }
+
+ var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0);
+ if (-128 <= value && value < 128) {
+ goog.math.Long.IntCache_[value] = obj;
+ }
+ return obj;
+};
+
+
+/**
+ * Returns a Long representing the given value, provided that it is a finite
+ * number. Otherwise, zero is returned.
+ * @param {number} value The number in question.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromNumber = function(value) {
+ if (isNaN(value) || !isFinite(value)) {
+ return goog.math.Long.ZERO;
+ } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MIN_VALUE;
+ } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
+ return goog.math.Long.MAX_VALUE;
+ } else if (value < 0) {
+ return goog.math.Long.fromNumber(-value).negate();
+ } else {
+ return new goog.math.Long(
+ (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
+ (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
+ }
+};
+
+
+/**
+ * Returns a Long representing the 64-bit integer that comes by concatenating
+ * the given high and low bits. Each is assumed to use 32 bits.
+ * @param {number} lowBits The low 32-bits.
+ * @param {number} highBits The high 32-bits.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromBits = function(lowBits, highBits) {
+ return new goog.math.Long(lowBits, highBits);
+};
+
+
+/**
+ * Returns a Long representation of the given string, written using the given
+ * radix.
+ * @param {string} str The textual representation of the Long.
+ * @param {number=} opt_radix The radix in which the text is written.
+ * @return {!goog.math.Long} The corresponding Long value.
+ */
+goog.math.Long.fromString = function(str, opt_radix) {
+ if (str.length == 0) {
+ throw Error('number format error: empty string');
+ }
+
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (str.charAt(0) == '-') {
+ return goog.math.Long.fromString(str.substring(1), radix).negate();
+ } else if (str.indexOf('-') >= 0) {
+ throw Error('number format error: interior "-" character: ' + str);
+ }
+
+ // Do several (8) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
+
+ var result = goog.math.Long.ZERO;
+ for (var i = 0; i < str.length; i += 8) {
+ var size = Math.min(8, str.length - i);
+ var value = parseInt(str.substring(i, i + size), radix);
+ if (size < 8) {
+ var power = goog.math.Long.fromNumber(Math.pow(radix, size));
+ result = result.multiply(power).add(goog.math.Long.fromNumber(value));
+ } else {
+ result = result.multiply(radixToPower);
+ result = result.add(goog.math.Long.fromNumber(value));
+ }
+ }
+ return result;
+};
+
+
+// NOTE: the compiler should inline these constant values below and then remove
+// these variables, so there should be no runtime penalty for these.
+
+
+/**
+ * Number used repeated below in calculations. This must appear before the
+ * first call to any from* function below.
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_32_DBL_ =
+ goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_31_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ / 2;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_48_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_64_DBL_ =
+ goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+goog.math.Long.TWO_PWR_63_DBL_ =
+ goog.math.Long.TWO_PWR_64_DBL_ / 2;
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.ZERO = goog.math.Long.fromInt(0);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.ONE = goog.math.Long.fromInt(1);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.MAX_VALUE =
+ goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
+
+
+/** @type {!goog.math.Long} */
+goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0);
+
+
+/**
+ * @type {!goog.math.Long}
+ * @private
+ */
+goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24);
+
+
+/** @return {number} The value, assuming it is a 32-bit integer. */
+goog.math.Long.prototype.toInt = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The closest floating-point representation to this value. */
+goog.math.Long.prototype.toNumber = function() {
+ return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
+ this.getLowBitsUnsigned();
+};
+
+
+/**
+ * @param {number=} opt_radix The radix in which the text should be written.
+ * @return {string} The textual representation of this value.
+ * @override
+ */
+goog.math.Long.prototype.toString = function(opt_radix) {
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (this.isZero()) {
+ return '0';
+ }
+
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ // We need to change the Long value before it can be negated, so we remove
+ // the bottom-most digit in this base and then recurse to do the rest.
+ var radixLong = goog.math.Long.fromNumber(radix);
+ var div = this.div(radixLong);
+ var rem = div.multiply(radixLong).subtract(this);
+ return div.toString(radix) + rem.toInt().toString(radix);
+ } else {
+ return '-' + this.negate().toString(radix);
+ }
+ }
+
+ // Do several (6) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
+
+ var rem = this;
+ var result = '';
+ while (true) {
+ var remDiv = rem.div(radixToPower);
+ var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
+ var digits = intval.toString(radix);
+
+ rem = remDiv;
+ if (rem.isZero()) {
+ return digits + result;
+ } else {
+ while (digits.length < 6) {
+ digits = '0' + digits;
+ }
+ result = '' + digits + result;
+ }
+ }
+};
+
+
+/** @return {number} The high 32-bits as a signed value. */
+goog.math.Long.prototype.getHighBits = function() {
+ return this.high_;
+};
+
+
+/** @return {number} The low 32-bits as a signed value. */
+goog.math.Long.prototype.getLowBits = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The low 32-bits as an unsigned value. */
+goog.math.Long.prototype.getLowBitsUnsigned = function() {
+ return (this.low_ >= 0) ?
+ this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
+};
+
+
+/**
+ * @return {number} Returns the number of bits needed to represent the absolute
+ * value of this Long.
+ */
+goog.math.Long.prototype.getNumBitsAbs = function() {
+ if (this.isNegative()) {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return 64;
+ } else {
+ return this.negate().getNumBitsAbs();
+ }
+ } else {
+ var val = this.high_ != 0 ? this.high_ : this.low_;
+ for (var bit = 31; bit > 0; bit--) {
+ if ((val & (1 << bit)) != 0) {
+ break;
+ }
+ }
+ return this.high_ != 0 ? bit + 33 : bit + 1;
+ }
+};
+
+
+/** @return {boolean} Whether this value is zero. */
+goog.math.Long.prototype.isZero = function() {
+ return this.high_ == 0 && this.low_ == 0;
+};
+
+
+/** @return {boolean} Whether this value is negative. */
+goog.math.Long.prototype.isNegative = function() {
+ return this.high_ < 0;
+};
+
+
+/** @return {boolean} Whether this value is odd. */
+goog.math.Long.prototype.isOdd = function() {
+ return (this.low_ & 1) == 1;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long equals the other.
+ */
+goog.math.Long.prototype.equals = function(other) {
+ return (this.high_ == other.high_) && (this.low_ == other.low_);
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long does not equal the other.
+ */
+goog.math.Long.prototype.notEquals = function(other) {
+ return (this.high_ != other.high_) || (this.low_ != other.low_);
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than the other.
+ */
+goog.math.Long.prototype.lessThan = function(other) {
+ return this.compare(other) < 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than or equal to the other.
+ */
+goog.math.Long.prototype.lessThanOrEqual = function(other) {
+ return this.compare(other) <= 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than the other.
+ */
+goog.math.Long.prototype.greaterThan = function(other) {
+ return this.compare(other) > 0;
+};
+
+
+/**
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than or equal to the other.
+ */
+goog.math.Long.prototype.greaterThanOrEqual = function(other) {
+ return this.compare(other) >= 0;
+};
+
+
+/**
+ * Compares this Long with the given one.
+ * @param {goog.math.Long} other Long to compare against.
+ * @return {number} 0 if they are the same, 1 if the this is greater, and -1
+ * if the given one is greater.
+ */
+goog.math.Long.prototype.compare = function(other) {
+ if (this.equals(other)) {
+ return 0;
+ }
+
+ var thisNeg = this.isNegative();
+ var otherNeg = other.isNegative();
+ if (thisNeg && !otherNeg) {
+ return -1;
+ }
+ if (!thisNeg && otherNeg) {
+ return 1;
+ }
+
+ // at this point, the signs are the same, so subtraction will not overflow
+ if (this.subtract(other).isNegative()) {
+ return -1;
+ } else {
+ return 1;
+ }
+};
+
+
+/** @return {!goog.math.Long} The negation of this value. */
+goog.math.Long.prototype.negate = function() {
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.MIN_VALUE;
+ } else {
+ return this.not().add(goog.math.Long.ONE);
+ }
+};
+
+
+/**
+ * Returns the sum of this and the given Long.
+ * @param {goog.math.Long} other Long to add to this one.
+ * @return {!goog.math.Long} The sum of this and the given Long.
+ */
+goog.math.Long.prototype.add = function(other) {
+ // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 + b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 + b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 + b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 + b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns the difference of this and the given Long.
+ * @param {goog.math.Long} other Long to subtract from this.
+ * @return {!goog.math.Long} The difference of this and the given Long.
+ */
+goog.math.Long.prototype.subtract = function(other) {
+ return this.add(other.negate());
+};
+
+
+/**
+ * Returns the product of this and the given long.
+ * @param {goog.math.Long} other Long to multiply with this.
+ * @return {!goog.math.Long} The product of this and the other.
+ */
+goog.math.Long.prototype.multiply = function(other) {
+ if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ } else if (other.isZero()) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().multiply(other.negate());
+ } else {
+ return this.negate().multiply(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.multiply(other.negate()).negate();
+ }
+
+ // If both longs are small, use float multiplication
+ if (this.lessThan(goog.math.Long.TWO_PWR_24_) &&
+ other.lessThan(goog.math.Long.TWO_PWR_24_)) {
+ return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
+ }
+
+ // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
+ // We can skip products that would overflow.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 * b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 * b00;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c16 += a00 * b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 * b00;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a16 * b16;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a00 * b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
+ c48 &= 0xFFFF;
+ return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns this Long divided by the given one.
+ * @param {goog.math.Long} other Long by which to divide.
+ * @return {!goog.math.Long} This Long divided by the given one.
+ */
+goog.math.Long.prototype.div = function(other) {
+ if (other.isZero()) {
+ throw Error('division by zero');
+ } else if (this.isZero()) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.equals(goog.math.Long.MIN_VALUE)) {
+ if (other.equals(goog.math.Long.ONE) ||
+ other.equals(goog.math.Long.NEG_ONE)) {
+ return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ONE;
+ } else {
+ // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
+ var halfThis = this.shiftRight(1);
+ var approx = halfThis.div(other).shiftLeft(1);
+ if (approx.equals(goog.math.Long.ZERO)) {
+ return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE;
+ } else {
+ var rem = this.subtract(other.multiply(approx));
+ var result = approx.add(rem.div(other));
+ return result;
+ }
+ }
+ } else if (other.equals(goog.math.Long.MIN_VALUE)) {
+ return goog.math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().div(other.negate());
+ } else {
+ return this.negate().div(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.div(other.negate()).negate();
+ }
+
+ // Repeat the following until the remainder is less than other: find a
+ // floating-point that approximates remainder / other *from below*, add this
+ // into the result, and subtract it from the remainder. It is critical that
+ // the approximate value is less than or equal to the real value so that the
+ // remainder never becomes negative.
+ var res = goog.math.Long.ZERO;
+ var rem = this;
+ while (rem.greaterThanOrEqual(other)) {
+ // Approximate the result of division. This may be a little greater or
+ // smaller than the actual value.
+ var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
+
+ // We will tweak the approximate result by changing it in the 48-th digit or
+ // the smallest non-fractional digit, whichever is larger.
+ var log2 = Math.ceil(Math.log(approx) / Math.LN2);
+ var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
+
+ // Decrease the approximation until it is smaller than the remainder. Note
+ // that if it is too large, the product overflows and is negative.
+ var approxRes = goog.math.Long.fromNumber(approx);
+ var approxRem = approxRes.multiply(other);
+ while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
+ approx -= delta;
+ approxRes = goog.math.Long.fromNumber(approx);
+ approxRem = approxRes.multiply(other);
+ }
+
+ // We know the answer can't be zero... and actually, zero would cause
+ // infinite recursion since we would make no progress.
+ if (approxRes.isZero()) {
+ approxRes = goog.math.Long.ONE;
+ }
+
+ res = res.add(approxRes);
+ rem = rem.subtract(approxRem);
+ }
+ return res;
+};
+
+
+/**
+ * Returns this Long modulo the given one.
+ * @param {goog.math.Long} other Long by which to mod.
+ * @return {!goog.math.Long} This Long modulo the given one.
+ */
+goog.math.Long.prototype.modulo = function(other) {
+ return this.subtract(this.div(other).multiply(other));
+};
+
+
+/** @return {!goog.math.Long} The bitwise-NOT of this value. */
+goog.math.Long.prototype.not = function() {
+ return goog.math.Long.fromBits(~this.low_, ~this.high_);
+};
+
+
+/**
+ * Returns the bitwise-AND of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to AND.
+ * @return {!goog.math.Long} The bitwise-AND of this and the other.
+ */
+goog.math.Long.prototype.and = function(other) {
+ return goog.math.Long.fromBits(this.low_ & other.low_,
+ this.high_ & other.high_);
+};
+
+
+/**
+ * Returns the bitwise-OR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to OR.
+ * @return {!goog.math.Long} The bitwise-OR of this and the other.
+ */
+goog.math.Long.prototype.or = function(other) {
+ return goog.math.Long.fromBits(this.low_ | other.low_,
+ this.high_ | other.high_);
+};
+
+
+/**
+ * Returns the bitwise-XOR of this Long and the given one.
+ * @param {goog.math.Long} other The Long with which to XOR.
+ * @return {!goog.math.Long} The bitwise-XOR of this and the other.
+ */
+goog.math.Long.prototype.xor = function(other) {
+ return goog.math.Long.fromBits(this.low_ ^ other.low_,
+ this.high_ ^ other.high_);
+};
+
+
+/**
+ * Returns this Long with bits shifted to the left by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the left by the given amount.
+ */
+goog.math.Long.prototype.shiftLeft = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var low = this.low_;
+ if (numBits < 32) {
+ var high = this.high_;
+ return goog.math.Long.fromBits(
+ low << numBits,
+ (high << numBits) | (low >>> (32 - numBits)));
+ } else {
+ return goog.math.Long.fromBits(0, low << (numBits - 32));
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount.
+ */
+goog.math.Long.prototype.shiftRight = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >> numBits);
+ } else {
+ return goog.math.Long.fromBits(
+ high >> (numBits - 32),
+ high >= 0 ? 0 : -1);
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount, with
+ * the new top bits matching the current sign bit.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!goog.math.Long} This shifted to the right by the given amount, with
+ * zeros placed into the new leading bits.
+ */
+goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return goog.math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >>> numBits);
+ } else if (numBits == 32) {
+ return goog.math.Long.fromBits(high, 0);
+ } else {
+ return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
+ }
+ }
+};
\ No newline at end of file
diff --git a/gulpfile.js b/gulpfile.js
index a91bd7f2..9e36bd92 100644
--- a/gulpfile.js
+++ b/gulpfile.js
@@ -49,6 +49,8 @@ gulp.task('copy', function() {
.pipe(gulp.dest('dist/vendor/console-polyfill')),
gulp.src('app/js/lib/mtproto.js')
.pipe(gulp.dest('dist/js/lib')),
+ gulp.src('app/vendor/closure/long.js')
+ .pipe(gulp.dest('dist/vendor/closure')),
gulp.src('app/vendor/jsbn/jsbn_combined.js')
.pipe(gulp.dest('dist/vendor/jsbn')),
gulp.src('app/vendor/cryptoJS/crypto.js')